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The first part of SC101 deals with the physics of lithographic
pattern definition and is targeted at those relatively new to the
industry. The course provides students with a broad overview of
the different wafer printing technologies with emphasis on optical
processing techniques and their evolution over time in response to
the demands of Moore’s Law. The problem is that as feature sizes
get smaller and smaller in order to accommodate the increasing
number of transistors in a given area of silicon that Moore’s Law
requires, physical constraints of the different optical exposure
technologies result in a loss in the fidelity of the lithographically
defined image which negatively impacts resolution.

Part 1 reviews the physical constraints imposed by each printing
technology on resolution and covers a broad array of topics
including image formation, diffraction, spatial coherence,
modulation transfer function, numerical aperture, optical
extensions encompassing wave front engineering techniques,
among others, giving students an appreciation of the
interrelationships between these parameters in optimizing system
performance.
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The following pages give examples of the kind of information
presented.
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Lithography Resolution and Depth of Focus 3

A =wavelength of illuminating light
Resolution = k; 7, k, = process constant
NA = lens numeri

Smaller A :> Light source & Optics
Higher NA :> Lens design improvements

Lower k; :> Process/resist improvements =
Improved optical schemes <
N
_ A k,: depending on the criteria used to define

acceptable imaging and on the type of feai@



Mvyriad of optical extensions
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Immersion Lithography
imec Improvements in resolution
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Extreme Ultra Violet (EUV) to the Rescue
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Covered Topics and Learning Outcomes

This second part of SC101 will deal with the
underlying chemistry of photoresists and
their processing.

The course topics cover the make-up and
mechanisms of action of common
photoresist materials for the wavelengths
used by the industry, from broadband to
EUV exposures. Novel patterning
techniques such as Directed Self Assembly

For high end Reticle (mask)
(DSA) are also presented. chips, this
photostep s
The course concludes with an outlook on sequence is
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times or more.

Wafer (with photoresist)

The following pages give examples of the
kind of information presented.
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Well, How do These Things Really Work??
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chemical rectifier!




Lithographic Technologies Over Time
DUV reslists: ~9years
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Diazonaphthoquinone-Based Resists
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Materials for New Tech Nodes
Basic EUV Photoresist Types

The original photoevent generates a catalyst for Tin cluster provides high absorption
solubilization (typically a proton). The photoevent is but there is no chemical amplification:
amplified by the number of cycles each proton catalyzes. 1 exposure event = 1 chemical reaction.
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Block Copolymer Selt-Assembly

Random Copolymer:
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